Join your Salesforce and Pendo data
Stitch can replicate data from all your sources (including Salesforce and Pendo) to a central warehouse. From there, it's easy to perform the in-depth analysis you need.
Stitch can replicate data from all your sources (including Salesforce and Pendo) to a central warehouse. From there, it's easy to perform the in-depth analysis you need.
Integrate Salesforce and Pendo to turn your data into actionable insights.
Salesforce is the #1 CRM platform
Stitch offers detailed documentation on how to sync your Salesforce data.
Pendo is a product experience platform that helps software product teams deliver software users love
Stitch offers detailed documentation on how to sync your Pendo data.
Once you replicate your Salesforce data with Stitch, you can use it in many ways. For example, you can use the data modeling and transformation tool dbt to prepare data for reporting, analytics, or machine learning applications.
Dbt has prebuilt packages for many Stitch data sources, including Salesforce. Here’s a look at code for modeling Salesforce data. This particular block of code creates a daily model of your Salesforce opportunities.
View the source on GitHub →1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
--the output of this model is a day per opportunity history that the opp was active
{{
config(
materialized='table',
sort='date_day',
dist='opportunity_id'
)
}}
{%- set custom_fields = var('opportunity_history_custom_fields') -%}
with opp_history as (
select distinct
date_trunc('day', created_date)::date as start_date,
date_trunc('day', active_to)::date as end_date,
opportunity_id,
account_id,
owner_name,
stage_name
{{ "," if (custom_fields|length) > 0 }}
{% for custom_field in custom_fields %}
last_value({{custom_field}}) ignore nulls over (partition by opportunity_id,
created_date order by created_date rows between unbounded preceding and
unbounded following) as {{custom_field}}{{"," if not loop.last}}
{% endfor %}
from {{ref('sf_opportunity_history_joined')}}
),
days as (
{{ dbt_utils.date_spine(datepart="day",
start_date="to_date('{{ var('first_record') }}', 'mm/dd/yyyy')",
end_date="dateadd(week, 1, current_date)") }}
),
opp_days as (
--this creates the final output of one row per day the stage was active
select
days.date_day,
date_trunc('month', days.date_day)::date as date_month,
opp_history.*
from days
inner join opp_history
on days.date_day >= opp_history.start_date
and days.date_day < opp_history.end_date
)
select
{{ dbt_utils.surrogate_key('date_day','opportunity_id') }} as id,
*
from opp_days
We've developed a Looker Block for Salesforce data provisioned by Stitch. This block includes prebuilt code to create dashboards and models that can help uncover insights from your Salesforce data.
This Looker Block includes three dashboards that provide analysis on sales and marketing leadership, sales ops management, and sales representative performance. The dashboards highlight top-level sales metrics, conversion rates between funnel stages, and various metrics to assess your pipeline health. The LookML file shown here produces a dashboard that can be used to monitor lost and won deals, revenue, and win rate by representative to evaluate performance of your sales organization.
View the source on GitHub →1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
- dashboard: representative_performance
title: "Sales Representative Performance Dashboard"
layout: grid
rows:
- elements: [count_won_deals, salesrep_total_revenue, count_lost_deals, win_percentage ]
height: 150
- elements: [opportunities_to_wins_trend_peers]
height: 400
- elements: [salesrep_revenue_won_comparison]
height: 400
- elements: [salesrep_win_rate_comparison, salesrep_revenue_pipeline_comparison]
height: 400
filters:
- name: sales_rep
type: field_filter
explore: opportunity
field: opportunity_owner.name
- name: sales_segment
type: field_filter
explore: account
field: account.business_segment
elements:
- name: count_won_deals
title: 'Count of Won Deals (This Quarter)'
type: single_value
model: salesforce
explore: opportunity
measures: [opportunity.count_won]
listen:
sales_segment: account.business_segment
sales_rep: opportunity_owner.name
filters:
opportunity.close_date: last quarter
limit: 500
font_size: small
text_color: '#49719a'
width: 3
height: 2
- name: salesrep_total_revenue
title: 'Salesrep - Total Revenue (This Quarter)'
type: single_value
model: salesforce
explore: opportunity
measures: [opportunity.total_revenue]
listen:
sales_segment: account.business_segment
sales_rep: opportunity_owner.name
filters:
opportunity.close_date: 'last quarter'
limit: 500
font_size: small
text_color: '#49719a'
width: 3
height: 2
- name: count_lost_deals
title: 'Count of Lost Deals (This Quarter)'
type: single_value
model: salesforce
explore: opportunity
measures: [opportunity.count_lost]
listen:
sales_segment: account.business_segment
sales_rep: opportunity_owner.name
filters:
opportunity.close_date: 'last quarter'
limit: 500
font_size: small
text_color: '#49719a'
width: 3
height: 2
- name: win_percentage
title: 'Win Percentage of Closed Deals (This Quarter)'
type: single_value
model: salesforce
explore: opportunity
measures: [opportunity.win_percentage]
listen:
sales_segment: account.business_segment
sales_rep: opportunity_owner.name
filters:
opportunity.close_date: 'last quarter'
limit: 500
font_size: small
text_color: '#49719a'
width: 3
height: 2
- name: opportunities_to_wins_trend_peers
title: 'Opportunities to Wins by Rep'
type: looker_line
model: salesforce
explore: opportunity
dimensions: [opportunity.created_month, opportunity_owner.rep_comparitor]
pivots: [opportunity_owner.rep_comparitor]
measures: [opportunity.count, opportunity.count_won]
dynamic_fields:
- table_calculation: opportunities_to_won
label: opportunities_to_won
expression: 1.0*${opportunity.count_won}/${opportunity.count}
value_format: '#.0%'
hidden_fields: [opportunity.count_won, opportunity.count]
listen:
sales_rep: opportunity_owner.name_select
filters:
opportunity.created_month: 9 months ago for 9 months
sorts: [opportunity.created_month desc, opportunity_owner.rep_comparitor]
limit: 500
column_limit: 50
query_timezone: America/Los_Angeles
stacking: ''
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_value_labels: false
label_density: 25
font_size: small
legend_position: center
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: true
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_tick_density: default
y_axis_value_format: '#%'
show_x_axis_label: true
show_x_axis_ticks: true
x_axis_scale: auto
show_null_points: true
point_style: none
interpolation: linear
width: 12
height: 4
- name: salesrep_revenue_won_comparison
title: 'SalesRep - Revenue Won comparison'
type: looker_bar
model: salesforce
explore: opportunity
dimensions: [opportunity_owner.rep_comparitor]
measures: [opportunity.average_revenue_won]
listen:
sales_rep: opportunity_owner.name_select
sorts: [opportunity_owner.rep_comparitor]
limit: 500
query_timezone: America/Los_Angeles
stacking: ''
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_value_labels: true
label_density: 25
label_color: ['#3399CC']
font_size: small
legend_position: center
hide_legend: false
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_labels: [Total Revenue Won]
y_axis_tick_density: default
show_x_axis_label: false
show_x_axis_ticks: true
x_axis_scale: auto
show_null_labels: false
width: 6
height: 3
- name: salesrep_win_rate_comparison
title: 'SalesRep - Win Rate Comparison'
type: looker_bar
model: salesforce
explore: opportunity
dimensions: [opportunity_owner.rep_comparitor]
measures: [opportunity.win_percentage]
listen:
sales_rep: opportunity_owner.name_select
sorts: [opportunity_owner.rep_comparitor]
limit: 500
query_timezone: America/Los_Angeles
stacking: ''
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_value_labels: true
label_density: 25
label_color: ['#3399CC']
font_size: small
legend_position: center
hide_legend: false
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_labels: [Opportunity Win Rate]
y_axis_tick_density: default
show_x_axis_label: false
show_x_axis_ticks: true
x_axis_scale: auto
show_null_labels: false
width: 6
height: 3
- name: salesrep_revenue_pipeline_comparison
title: 'SalesRep - Revenue Pipeline comparison'
type: looker_bar
model: salesforce
explore: opportunity
dimensions: [opportunity_owner.rep_comparitor]
measures: [opportunity_owner.average_revenue_pipeline]
listen:
sales_rep: opportunity_owner.name_select
sorts: [opportunity_owner.rep_comparitor]
limit: 500
query_timezone: America/Los_Angeles
stacking: ''
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_value_labels: true
label_density: 25
label_color: ['#3399CC']
font_size: small
legend_position: center
hide_legend: false
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_labels: [Total Revenue Pipeline]
y_axis_tick_density: default
show_x_axis_label: false
show_x_axis_ticks: true
x_axis_scale: auto
show_null_labels: false
width: 6
height: 3
Stitch delivers all your data to the leading data lakes, warehouses, and storage platforms.
Give your analysts, data scientists, and other team members the freedom to use the analytics tools of their choice.
Thanks to Stitch we get the granular insight we need into our data. Having our Salesforce and internal data in one place was a key factor in helping us scale out our new business function.
Stitch is a simple, powerful ETL service built for developers. Stitch connects to your first-party data sources – from databases like MongoDB and MySQL, to SaaS tools like Salesforce and Zendesk – and replicates that data to your warehouse. With Stitch, developers can provision data for their internal users in minutes, not weeks.
Explore all of Stitch's featuresSelect your integrations, choose your warehouse, and enjoy Stitch free for 14 days.
Set up in minutesUnlimited data volume during trial
Stitch integrates with leading databases and SaaS products. No API maintenance, ever, while you maintain full control over replication behavior.
ActiveCampaign
AdRoll
Aftership
Amazon Aurora MySQL
Amazon Aurora PostgreSQL
Amazon RDS for MariaDB
Amazon RDS for MySQL
Amazon RDS for Oracle Database
Amazon RDS for PostgreSQL
Amazon RDS for SQL Server
Amazon S3 CSV
Amplitude
AppsFlyer
Asana
Autopilot
Autopilot Activities
BigCommerce
Braintree
Branch
Campaign Manager
Campaign Monitor
Chargebee
Circle CI
Close
Club Speed
Codat
Contentful
Customer.io
Delighted
Deputy
Desk.com
Dixa
Drip
DynamoDB
Eloqua
Facebook Ads
FormKeep
Freshdesk
Front
FullStory
GitHub
GitLab
Google Ads
Google Analytics
Google Analytics 360
Google Analytics 4
Google Cloud SQL MySQL
Google Cloud SQL PostgreSQL
Google Ecommerce
Google Search Console
Google Sheets
Harvest
Harvest Forecast
Heap
Help Scout
Heroku
HubSpot
IBM Db2
Impact
Import API
Intacct
Intercom
Invoiced
Iterable
Jira
Klaviyo
Lever
LinkedIn Ads
Listrak
LivePerson
LookML
Magento
Mailchimp
Mailjet
Mailshake
Mambu
MariaDB
Marketo
Microsoft Advertising (Bing Ads)
Microsoft Azure SQL Server Database
Microsoft SQL Server
Microsoft Teams
Mixpanel
MongoDB
MySQL
Netsuite
Netsuite Suite Analytics
Onfleet
Oracle
Oracle Netsuite Bronto Marketing Platform
Outbrain
Outreach
Pardot
Particle
Pendo
Pepperjam
Pinterest Ads
Pipedrive
Platform Purple
PostgreSQL
Quick Base
QuickBooks
Recharge
Recurly
Referral SaaSquatch
Responsys
Revinate
RingCentral
SFTP
Sailthru
Salesforce
Salesforce Marketing Cloud
Segment
Selligent
SendGrid
SendGrid Core
Sendwithus
ShipHero
Shippo
Shopify
Snapchat Ads
SparkPost
Square
Stripe
SurveyMonkey
Taboola
TikTok Ads
Toggl
Twilio
Typeform
Urban Airship
UserVoice
Vero
Webhooks
Workday RaaS
Xero
Yotpo
Zapier
Zendesk Chat
Zendesk Support
Zoom
Zoom (OAuth Review)
Zuora