Join your Facebook Ads and Heroku data
Stitch can replicate data from all your sources (including Facebook Ads and Heroku) to a central warehouse. From there, it's easy to perform the in-depth analysis you need.
Stitch can replicate data from all your sources (including Facebook Ads and Heroku) to a central warehouse. From there, it's easy to perform the in-depth analysis you need.
Integrate Facebook Ads and Heroku to turn your data into actionable insights.
Facebook Ads is one of the most efficient ways to advertise online
Stitch offers detailed documentation on how to sync your Facebook Ads data.
Heroku is a popular database tool.
Stitch offers detailed documentation on how to sync your Heroku data.
Once you replicate your Facebook Ads data with Stitch, you can use it in many ways. For example, you can use the data modeling and transformation tool dbt to prepare data for reporting, analytics, or machine learning applications.
Dbt has prebuilt packages for many Stitch data sources, including Facebook Ads. Here’s a look at code for modeling Facebook Ads data. This particular block of code prepares your Facebook Ads order data for analysis.
View the source on GitHub →1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
{% macro stitch_fb_ad_creatives() %}
{{ adapter_macro('facebook_ads.stitch_fb_ad_creatives') }}
{% endmacro %}
{% macro default__stitch_fb_ad_creatives() %}
with base as (
select * from {{ var('ad_creatives_table') }}
),
child_links as (
select * from {{ ref('fb_ad_creatives__child_links') }}
),
links_joined as (
select
id as creative_id,
lower(coalesce(
nullif(child_link, ''),
nullif({{ facebook_ads.nested_field('base.object_story_spec', ['link_data', 'call_to_action', 'value', 'link']) }}, ''),
nullif({{ facebook_ads.nested_field('base.object_story_spec', ['video_data', 'call_to_action', 'value', 'link']) }}, ''),
nullif({{ facebook_ads.nested_field('base.object_story_spec', ['link_data', 'link']) }}, '')
)) as url,
lower(coalesce(
nullif(url_tags, {{ dbt_utils.split_part('url', "'?'", 2) }}), '')
) as url_tags
from base
left join child_links
on base.id = child_links.creative_id
),
parsed as (
select
links_joined.*,
{{ dbt_utils.split_part('url', "'?'", 1) }} as base_url,
{{ dbt_utils.get_url_host('url') }} as url_host,
{{ dbt_utils.concat(["'/'", dbt_utils.get_url_path('url')]) }} as url_path,
{{ facebook_ads.get_url_parameter() }}
from links_joined
)
select * from parsed
{% endmacro %}
We've developed a Looker Block for Facebook Ads data provisioned by Stitch. This block includes prebuilt code to create dashboards and models that can help uncover insights from your Facebook Ads data.
This Looker Block includes three dashboards that provide granular analysis on ad performance metrics. This LookML file produces an overview dashboard and highlights marketing performance metrics such as ad spend, clicks, and impressions over time.
View the source on GitHub →1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
- dashboard: overview
title: Overview
layout: grid
rows:
- elements: [total_impressions, total_actions, total_spend]
height: 150
- elements: [spend_actions_impressions]
height: 400
- elements: [campaign_performance]
height: 400
- elements: [campaign_value]
height: 400
- elements: [campaign_delivery]
height: 400
- elements: [actions_by_country]
height: 400
- elements: [campaign_performance_and_clicks]
height: 400
- elements: [actions_by_type, avg_frequency_by_objective]
height: 400
- elements: [campaign_engagement]
height: 400
filters:
- name: campaign_name
type: string_filter
- name: date_start
type: date_filter
elements:
- name: total_impressions
title: Total impressions
type: single_value
model: facebook
explore: ad_insights
measures: [ad_insights.total_impressions]
sorts: [ad_insights.total_impressions desc]
limit: 5000
show_single_value_title: true
show_comparison: false
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: total_actions
title: Total actions
type: single_value
model: facebook
explore: ad_insights
measures: [ad_insights.total_actions]
sorts: [ad_insights.total_actions desc]
limit: 5000
show_single_value_title: true
show_comparison: false
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: total_spend
title: Total spend
type: single_value
model: facebook
explore: ad_insights
measures: [ad_insights.total_spend]
sorts: [ad_insights.total_spend desc]
limit: 5000
show_single_value_title: true
show_comparison: false
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: spend_actions_impressions
title: Spend, actions, and impressions over time
type: looker_line
model: facebook
explore: ad_insights
dimensions: [ad_insights.date_start_month]
measures: [ad_insights.total_spend, ad_insights.total_actions,
ad_insights.total_impressions]
sorts: [ad_insights.date_start_month desc]
limit: 5000
stacking: ''
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_value_labels: false
label_density: 25
legend_position: center
x_axis_gridlines: false
show_view_names: true
limit_displayed_rows: false
y_axis_combined: false
show_y_axis_labels: true
show_y_axis_ticks: false
y_axis_tick_density: default
show_x_axis_label: true
show_x_axis_ticks: true
x_axis_scale: auto
y_axis_scale_mode: linear
show_null_points: true
point_style: none
interpolation: linear
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: campaign_performance
title: Campaign performance
type: table
model: facebook
explore: ad_insights
dimensions: [campaigns.name, adsets.end_date, adsets.effective_status,
campaigns.objective]
measures: [ad_insights.total_actions, ad_insights.total_clicks,
ad_insights.total_reach, ad_insights.total_spend]
dynamic_fields:
- table_calculation: cost_per_action
label: cost_per_action
expression: ${ad_insights.total_spend} / ${ad_insights.total_actions}
sorts: [campaigns.name]
limit: 5000
show_view_names: false
show_row_numbers: true
truncate_column_names: false
table_theme: editable
limit_displayed_rows: false
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: campaign_value
title: Cost per action v. total actions by campaign
type: looker_scatter
model: facebook
explore: ad_insights
dimensions: [campaigns.name]
measures: [ad_insights.total_actions, ad_insights.total_spend]
dynamic_fields:
- table_calculation: cost_per_action
label: Cost per action
expression: ${ad_insights.total_spend} / ${ad_insights.total_actions}
hidden_fields: [ad_insights.total_spend, campaigns.name]
sorts: [cost_per_action desc]
description: 'Evaluate campaign performance by comparing the actions generated to the total spent on the campaign.'
limit: 5000
column_limit: 50
stacking: ''
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_value_labels: false
label_density: 25
legend_position: center
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: false
limit_displayed_rows: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_tick_density: default
show_x_axis_label: true
show_x_axis_ticks: true
x_axis_scale: auto
y_axis_scale_mode: linear
show_null_points: true
point_style: circle
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: campaign_delivery
title: Campaign delivery
type: table
model: facebook
explore: ad_insights
dimensions: [campaigns.name, adsets.end_date, adsets.effective_status,
campaigns.objective]
measures: [ad_insights.total_reach, ad_insights.avg_frequency,
ad_insights.avg_cpp, ad_insights.avg_cpm, ad_insights.total_impressions]
sorts: [campaigns.name]
limit: 5000
show_view_names: false
show_row_numbers: true
truncate_column_names: false
table_theme: editable
limit_displayed_rows: false
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: actions_by_country
title: Actions by country
type: looker_geo_choropleth
model: facebook
explore: ad_insights_by_country
dimensions: [ad_insights_by_country.country_iso]
measures: [ad_insights_by_country.total_actions]
sorts: [ad_insights_by_country.total_actions desc]
limit: 5000
map: auto
colors: ['#FFCC00']
show_view_names: true
quantize_colors: false
listen:
campaign_name: ad_insights_by_country.campaign_name
date_start: ad_insights_by_country.date_start_date
- name: campaign_performance_and_clicks
title: Campaign performance and clicks
type: table
model: facebook
explore: ad_insights
dimensions: [campaigns.name, adsets.effective_status, adsets.end_date,
campaigns.objective]
measures: [ad_insights.total_actions, ad_insights.total_reach,
ad_insights.avg_frequency, ad_insights.total_clicks, ad_insights.avg_ctr,
ad_insights.avg_cpc, ad_insights.total_impressions, ad_insights.avg_cpm,
ad_insights.total_inline_link_clicks, ad_insights.avg_inline_link_click_ctr,
ad_insights.avg_cost_per_inline_link_click, ad_insights.total_spend]
sorts: [ad_insights.total_actions desc]
limit: 5000
show_view_names: false
show_row_numbers: true
truncate_column_names: false
table_theme: editable
limit_displayed_rows: false
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: actions_by_type
title: Actions by type
type: looker_pie
model: facebook
explore: ad_action_insights
dimensions: [ad_action_insights.action_type]
measures: [ad_action_insights.total_actions]
sorts: [ad_action_insights.total_actions desc]
limit: 5000
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
value_labels: legend
show_view_names: true
listen:
campaign_name: ad_action_insights.campaign_name
date_start: ad_action_insights.date_start_date
- name: avg_frequency_by_objective
title: Average frequency by objective
type: looker_column
model: facebook
explore: ad_insights
dimensions: [campaigns.objective]
measures: [ad_insights.avg_frequency]
sorts: [ad_insights.avg_frequency desc]
limit: 5000
stacking: ''
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_value_labels: false
label_density: 25
legend_position: center
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: true
limit_displayed_rows: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_tick_density: default
show_x_axis_label: true
show_x_axis_ticks: true
x_axis_scale: auto
y_axis_scale_mode: linear
show_null_labels: false
listen:
campaign_name: ad_insights.campaign_name
date_start: ad_insights.date_start_date
- name: campaign_engagement
title: Campaign engagement
type: table
model: facebook
explore: ad_action_insights
dimensions: [campaigns.name, adsets.effective_status, adsets.end_date,
campaigns.objective]
measures: [ad_action_insights.post_likes, ad_action_insights.post_comments,
ad_action_insights.link_clicks, ad_action_insights.page_likes,
ad_action_insights.post_shares]
sorts: [campaigns.name]
limit: 5000
show_view_names: false
show_row_numbers: true
truncate_column_names: false
table_theme: editable
limit_displayed_rows: false
listen:
campaign_name: ad_action_insights.campaign_name
date_start: ad_action_insights.date_start_date
Stitch delivers all your data to the leading data lakes, warehouses, and storage platforms.
Give your analysts, data scientists, and other team members the freedom to use the analytics tools of their choice.
The best part? Zero engineering or ongoing maintenance. It's a no-brainer for Stitch to handle our data pipelines while our teams stay focused on our core business and growth.
Stitch is a simple, powerful ETL service built for developers. Stitch connects to your first-party data sources – from databases like MongoDB and MySQL, to SaaS tools like Salesforce and Zendesk – and replicates that data to your warehouse. With Stitch, developers can provision data for their internal users in minutes, not weeks.
Explore all of Stitch's featuresSelect your integrations, choose your warehouse, and enjoy Stitch free for 14 days.
Set up in minutesUnlimited data volume during trial
Stitch integrates with leading databases and SaaS products. No API maintenance, ever, while you maintain full control over replication behavior.
ActiveCampaign
AdRoll
Aftership
Amazon Aurora MySQL
Amazon Aurora PostgreSQL
Amazon RDS for MariaDB
Amazon RDS for MySQL
Amazon RDS for Oracle Database
Amazon RDS for PostgreSQL
Amazon RDS for SQL Server
Amazon S3 CSV
Amplitude
AppsFlyer
Asana
Autopilot
Autopilot Activities
BigCommerce
Braintree
Branch
Campaign Manager
Campaign Monitor
Chargebee
Circle CI
Close
Club Speed
Codat
Contentful
Customer.io
Delighted
Deputy
Desk.com
Dixa
Drip
DynamoDB
Eloqua
Facebook Ads
FormKeep
Freshdesk
Front
FullStory
GitHub
GitLab
Google Ads
Google Analytics
Google Analytics 360
Google Analytics 4
Google Cloud SQL MySQL
Google Cloud SQL PostgreSQL
Google Ecommerce
Google Search Console
Google Sheets
Harvest
Harvest Forecast
Heap
Help Scout
Heroku
HubSpot
IBM Db2
Impact
Import API
Intacct
Intercom
Invoiced
Iterable
Jira
Klaviyo
Lever
LinkedIn Ads
Listrak
LivePerson
LookML
Magento
Mailchimp
Mailjet
Mailshake
Mambu
MariaDB
Marketo
Microsoft Advertising (Bing Ads)
Microsoft Azure SQL Server Database
Microsoft SQL Server
Microsoft Teams
Mixpanel
MongoDB
MySQL
Netsuite
Netsuite Suite Analytics
Onfleet
Oracle
Oracle Netsuite Bronto Marketing Platform
Outbrain
Outreach
Pardot
Particle
Pendo
Pepperjam
Pinterest Ads
Pipedrive
Platform Purple
PostgreSQL
Quick Base
QuickBooks
Recharge
Recurly
Referral SaaSquatch
Responsys
Revinate
RingCentral
SFTP
Sailthru
Salesforce
Salesforce Marketing Cloud
Segment
Selligent
SendGrid
SendGrid Core
Sendwithus
ShipHero
Shippo
Shopify
Snapchat Ads
SparkPost
Square
Stripe
SurveyMonkey
Taboola
TikTok Ads
Toggl
Twilio
Typeform
Urban Airship
UserVoice
Vero
Webhooks
Workday RaaS
Xero
Yotpo
Zapier
Zendesk Chat
Zendesk Support
Zoom
Zoom (OAuth Review)
Zuora